NONABELIAN DUALITY AS A SYMMETRY OF AUXILIARY INTERACTION

Evgeny Ivanov, Boris Zupnik

BLTP JINR, Dubna

"Frontiers of Mathematical Physics"
Round Table "France - Italy - Russia", Dubna, 16-18 December 2012

Based on our works: 1) Nucl. Phys. B 618 (2001) 3; hep-th/0110074; 2) Proceedings of XVI Max Born symposium (2001), hep-th/0202203; 3) Phys. Atom. Nucl., 67 (2004)

$O(N)$ symmetry and Abelian gauge fields

We consider the nonlinear interactions of Abelian gauge fields $A_{m}^{k}, k=1,2, \ldots N$ and use the bispinor representation of the field-strengths
$F_{\alpha \beta}^{k}=\frac{1}{8}\left(\sigma^{m} \bar{\sigma}^{n}-\sigma^{n} \bar{\sigma}^{m}\right)_{\alpha \beta}\left(\partial_{m} A_{n}^{k}-\partial_{n} A_{m}^{k}\right)$. The Bianchi identities read

$$
B_{\alpha \dot{\alpha}}^{k}=\partial_{\alpha}^{\dot{\beta}} \bar{F}_{\dot{\alpha} \dot{\beta}}^{k}-\partial_{\dot{\alpha}}^{\beta} F_{\alpha \beta}^{k}=0
$$

where $\bar{F}_{\dot{\alpha} \dot{\beta}}^{k}=\left(F_{\alpha \beta}^{k}\right)^{*}$.
The nonlinear Lagrangian of N abelian gauge fields

$$
L\left(F^{\kappa}, \bar{F}^{\kappa}\right)=-\frac{1}{2}\left[\left(F^{\kappa} F^{\kappa}\right)+\left(\bar{F}^{\kappa} \bar{F}^{\kappa}\right)\right]+L^{i n t}\left(F^{\kappa}, \bar{F}^{\kappa}\right)
$$

is manifestly invariant under the real $O(N)$ transformation

$$
\delta F_{\alpha \beta}^{k}=\xi^{k l} F_{\alpha \beta}^{\prime}, \quad \delta \bar{F}_{\dot{\alpha} \dot{\beta}}^{k}=\xi^{k l} \bar{F}_{\dot{\alpha} \dot{\beta}}^{k}, \quad \xi^{k l}=-\xi^{k} .
$$

We use the scalar matrix combinations of the field-strengths in the Lagrangian $L(\varphi, \bar{\varphi})$

$U(N)$ symmetry and auxiliary fields

Our generalized auxiliary-field representation of the $O(N)$ invariant Lagrangian contains N complex auxiliary fields $V_{\alpha \beta}^{k}$

$$
\begin{gathered}
\mathcal{L}=\frac{1}{2}\left[\left(F^{k} F^{k}\right)+\left(\bar{F}^{k} \bar{F}^{k}\right)\right]-2\left[\left(F^{k} V^{k}\right)+\left(\bar{F}^{k} \bar{V}^{k}\right)\right] \\
+\left(V^{k} V^{k}\right)+\left(\bar{V}^{k} \bar{V}^{k}\right)+E(\nu, \bar{\nu})
\end{gathered}
$$

where E is the $O(N)$ invariant real interaction of the scalar complex variables

$$
\nu^{k l}=\left(V^{k} V^{\prime}\right), \quad \bar{\nu}^{k l}=\left(\bar{V}^{k} \bar{V}^{\prime}\right) .
$$

The differential equation for this Lagrangian contains the dual fields

$$
P_{\alpha \beta}^{k}(F, V)=i\left(F^{k}-2 V^{k}\right)_{\alpha \beta}, \quad \bar{P}_{\dot{\alpha} \dot{\beta}}^{k}(F, V)=-i\left(\bar{F}^{k}-2 \bar{V}^{k}\right)_{\dot{\alpha} \dot{\beta}}
$$

We define the additional linear transformation with the real parameters $\eta^{k l}=\eta^{k}$

$$
\delta F^{k}=\eta^{k l} P^{\prime}=i \eta^{k l}\left(F^{\prime}-2 V^{\prime}\right), \quad \delta P^{k}=-\eta^{k l} F^{\prime}
$$

which form the $U(N)$ Lie algebra together with the $O(N)$ transformations. The corresponding $U(N)$ transformations of the auxiliary fields read

$$
\delta V^{k}=\left(\xi^{k l}-i \eta^{k l}\right) V^{\prime}, \quad \delta \bar{V}^{k}=\left(\xi^{k l}+i \eta^{k l}\right) \bar{V}^{\prime} .
$$

Transformations of the scalar variables $\nu^{k l}, \quad \bar{\nu}^{k l}$ can be presented in the matrix form

$$
\delta \nu=[\xi, \nu]-i\{\eta, \nu\}, \quad \delta \bar{\nu}=[\xi, \bar{\nu}]+i\{\eta, \bar{\nu}\} .
$$

We define the Hermitian matrix variables

$$
a^{k l}=(\bar{\nu} \nu)^{k l}, \quad \bar{a}^{k l}=(\nu \bar{\nu})^{k l}, \quad \delta a=[\xi, a]+i[\eta, a]
$$

and use the matrix relations for the matrix polynomials

$$
\left(a^{n} \bar{\nu}\right)^{k l}=\left(\bar{\nu} \bar{a}^{n}\right)^{k l}=\left(a^{n} \bar{\nu}\right)^{k}, \quad\left(\nu a^{n}\right)^{k l}=\left(\bar{a}^{n} \nu\right)^{k l}=\left(\nu a^{n}\right)^{\mid k} .
$$

The independent real $U(N)$ invariants are $A_{n}=\frac{1}{n} \operatorname{Tr} a^{n}$ where $n=1,2, \ldots N$

$$
d A_{n}=\operatorname{Tr}\left(d a a^{n-1}\right), \quad \frac{\partial A_{n}}{\partial a^{k l}}=\left(a^{n-1}\right)^{k l} .
$$

The basic algebraic equation for the Lagrangian \mathcal{L} is derived by the V^{k} variation

$$
\left(F^{k}-V^{k}\right)_{\alpha \beta}=\frac{1}{2}\left(F^{k}-i P^{k}\right)_{\alpha \beta}=\mathcal{E}_{k l} V_{\alpha \beta}^{\prime}, \quad \mathcal{E}_{k l}=\frac{\partial \mathcal{E}}{\partial \nu^{k l}} .
$$

The scalar matrix algebraic equation follows from this relation

$$
\varphi^{k l}=\left[\delta^{k r}+\mathcal{E}_{k r}\right] \nu^{r s}\left[\delta^{s l}+\mathcal{E}_{s l}\right] .
$$

We introduce the matrix function $E(a)$ and consider the trace representation of the auxiliary interaction

$$
\mathcal{E}=\operatorname{Tr} E(a), \quad d \mathcal{E}=\operatorname{Tr}\left(d a E_{a}\right)=\left(d a^{\prime k} E_{a}^{k l}\right)=d A_{n} \mathcal{E}_{n}
$$

$$
E(a)=\sum_{k=1}^{\infty} e_{k} a^{k}, \quad E_{a}=\sum_{k=1}^{\infty} k e_{k} a^{k-1}, \quad \mathcal{E}_{n}=\frac{\partial \mathcal{E}}{\partial A_{n}}
$$

where e_{k} are some real coefficients. This representation can be used in the basic algebraic equation

$$
\frac{\partial \mathcal{E}}{\partial \nu^{k l}}=\left(E_{a}\right)^{k r} \bar{\nu}^{r l}=\mathcal{E}_{1} \bar{\nu}^{k l}+\mathcal{E}_{2} a^{k r} \bar{\nu}^{r l}+\mathcal{E}_{3} a^{k j} a^{j r} \bar{\nu}^{r l}+\ldots
$$

The $U(N)$ duality is equivalent to the invariance of the auxiliary interaction $\mathcal{E}=\operatorname{Tr} E(a)$. The $U(N)$ covariant auxiliary equation of motion can be interpreted as the twisted self-duality equation

$$
\left(F^{k}-V^{k}\right)_{\alpha \beta}=\left(E_{\alpha}\right)^{k r} \bar{\nu}^{r l} V_{\alpha \beta}^{\prime} .
$$

The solution of the twisted self-duality equation has the simple form

$$
\begin{gathered}
V_{\alpha \beta}^{k}=F_{\alpha \beta}^{\prime} G_{k l}(\varphi, \bar{\varphi}), \quad P_{\alpha \beta}^{k}=2 i F_{\alpha \beta}^{\prime} L_{k l}=i F_{\alpha \beta}^{\prime}\left[\delta_{k l}-2 G_{k l}\right] \\
G_{k l}=\left[\delta^{k l}+\mathcal{E}_{k l}\right]^{-1}=\frac{1}{2} \delta^{k l}-\frac{\partial L}{\partial \varphi^{k l}} .
\end{gathered}
$$

This solution allows us to construct uniquely the self-dual Lagrangian in the standard representation $L\left(\varphi^{k l}, \bar{\varphi}^{k l}\right)$. The Gailard-Zumino-type formula for the $U(N)$ self-dual Lagrangian has the following explicit form in our formalism:

$$
\begin{gathered}
\mathcal{L}=\frac{i}{2}\left[\bar{P}^{k}(F, V) \bar{F}^{k}-P^{k}(F, V) F^{k}\right]+\left[V^{k} V^{k}-\left(F^{k} V^{k}\right)\right] \\
+\left[\bar{V}^{k} \bar{V}^{k}-\left(\bar{F}^{k} \bar{V}^{k}\right)\right]+\mathcal{E}
\end{gathered}
$$

where $V^{k} V^{k}-\left(F^{k} V^{k}\right)$ is the complex bilinear $U(N)$ invariant. The $U(N)$ invariance of the auxiliary interaction \mathcal{E} is equivalent to the $U(N)$ self-duality condition.

The alternative μ representation for the $O(N)$ Lagrangian uses the matrix variables

$$
\begin{gathered}
\mu^{k l}=\frac{\partial \mathcal{E}(a)}{\partial \nu^{k l}}=\left(E_{a}\right)^{k r} \bar{\nu}^{r l}, \quad \bar{\mu}^{k l}=\nu^{k r}\left(E_{a}\right)^{r l} \\
b^{k l}=\mu^{k s} \bar{\mu}^{s l}=\left(E_{a} \bar{\nu} \nu E_{a}\right)^{k l}=\left(a E_{a}^{2}\right)^{k l}, \quad b^{k k}=\bar{b}^{k l}=\bar{\mu}^{k r} \mu^{r l} .
\end{gathered}
$$

The transformation laws of these matrix variables have the following form:

$$
\delta \mu=[\xi, \mu]+i\{\eta, \mu\}, \quad \delta b=[\xi, b]+i[\eta, b]
$$

We use the basic relations for these matrix variables

$$
\begin{gathered}
\left(b^{n} \mu\right)^{k l}=\left(\mu \bar{b}^{n}\right)^{k l}=\left(b^{n} \mu\right)^{l k}, \\
\left(\bar{\mu} b^{n}\right)^{k l}=\left(\bar{b}^{n} \bar{\mu}\right)^{k l}=\left(\bar{\mu} b^{n}\right)^{k}
\end{gathered}
$$

and construct the independent $U(N)$ invariants in this representation $B_{n}=\frac{1}{n} \operatorname{Tr} b^{n}$.

The basic transformation from the (F, V) representation to the μ representation has the form

$$
\mathcal{I}\left(B_{n}\right)=\operatorname{Tr} I(b)=\mathcal{E}-\nu^{k l} \mu^{k l}-\bar{\nu}^{k l} \bar{\mu}^{k l}=\operatorname{Tr}\left[E-2 a E_{a}\right]
$$

$\nu^{k l}=-\frac{\partial \mathcal{I}}{\partial \mu^{k l}}=-\left(\bar{\mu} I_{b}\right)^{k l}=-\left(\bar{I}_{\bar{b}} \bar{\mu}\right)^{k l}, \quad d \mathcal{I}=\operatorname{Tr}\left(d b I_{b}\right)=\operatorname{Tr}\left(d \bar{b} \bar{I}_{\bar{b}}\right)$
where $I(b)$ and I_{b} are the matrix functions.
It is instructive to consider the covariant matrix equations

$$
\begin{gathered}
I(b)=E(a)-2 a E_{a}, \quad E(a)=I(b)-2 b I_{b}, \\
E_{a}=-I_{b}^{-1}, \quad a=b I_{b}^{2}, \quad b=a E_{a}^{2}
\end{gathered}
$$

which are analogous to the relations between alternative auxiliary representations in the $U(1)$ theory.
The basic scalar variables can be rewritten in this representation
$\varphi^{k l}=-\left(\delta^{k r}+\mu^{k r}\right) \frac{\partial \mathcal{I}}{\partial \mu^{r s}}\left(\delta^{s l}+\mu^{s l}\right)=-\left[\bar{\mu} l_{b}+b l_{b}+\bar{\mu} l_{b} \mu+b l_{b} \mu\right]^{k l}$.

We consider the matrix expansions with the coefficients i_{k}

$$
\begin{gathered}
I_{b}=-2+2 i_{2} b+3 i_{3} b^{2}+\ldots, \quad \bar{\mu} I_{b}=-2 \bar{\mu}+2 i_{2} \bar{\mu} b+3 i_{3} \bar{\mu} b^{2}+\ldots, \\
b I_{b} \mu=-2 b \mu+2 i_{2} b^{2} \mu+3 i_{3} b^{3} \mu+\ldots
\end{gathered}
$$

The iterative matrix equation has the following form:

$$
\begin{gathered}
\bar{\mu}=\frac{1}{2} \varphi-b-\bar{b}-b \mu+i_{2} \bar{\mu} b+i_{2} b^{2}+i_{2} \bar{b}^{2}+\frac{3}{2} i_{3} \bar{\mu} b^{2}+i_{2} b^{2} \mu \\
+\frac{3}{2} i_{3} b^{3}+\frac{3}{2} i_{3} \bar{b}^{3}+\frac{3}{2} i_{3} b^{3} \mu+\ldots
\end{gathered}
$$

Solving this equations for $\bar{\mu}^{k}(\varphi, \bar{\varphi})$ we can construct the field derivatives of the Lagrangian

$$
\left[\delta^{k l}+\bar{\mu}^{k l}\right]^{-1}=\frac{1}{2} \delta^{k l}-\frac{\partial L}{\partial \bar{\varphi}^{k l}} .
$$

The combined (F, V, μ) representation for the $U(N)$ self-dual theories has the form

$$
\begin{gathered}
L(V, F, \mu)=\frac{1}{2}\left[\left(F^{k} F^{k}\right)+\left(\bar{F}^{k} \bar{F}^{k}\right)\right]-2\left[\left(V^{k} \cdot F^{k}\right)+\left(\bar{V}^{k} \cdot \bar{F}^{k}\right)\right] \\
+\left(V^{k} V^{\prime}\right)\left(\delta^{k l}+\mu^{k l}\right)+\bar{V}^{k} \bar{V}^{\prime}\left(\delta^{k l}+\bar{\mu}^{k l}\right)+\mathcal{I}\left(B_{n}\right) .
\end{gathered}
$$

Excluding the V^{k} variables from this Lagrangian

$$
V_{\alpha \beta}^{k}=\left[(1+\mu)^{-1}\right]^{k l} F_{\alpha \beta}^{\prime}
$$

we obtain the (F, μ) representation for the $U(N)$ duality

$$
\tilde{L}\left(F^{k}, \mu^{k l}\right)=\frac{1}{2}\left(F^{k} F^{\prime}\right)\left[(\mu-1)(1+\mu)^{-1}\right]^{k l}+\text { c.c. }+\mathcal{I}\left(B_{n}\right)
$$

We can use similarity between the $U(1)$ interaction $I(b)$ and the matrix function $I(b)$ in the $U(N)$ case, although the solution of matrix equations is more difficult. The simple partial $U(N)$ interaction uses the one-parametric function $\mathcal{E}\left(A_{1}\right), \quad A_{1}=a^{k k}=\nu^{k} / \bar{\nu}^{/ k}$, then

$$
\mu^{k l}=\mathcal{E}_{1} \bar{\nu}^{k l}, \quad \bar{\mu}^{k l}=\mathcal{E}_{1} \nu^{k l}, \quad \nu^{k l}=-\mathcal{I}_{1} \bar{\mu}^{k l},
$$

$$
b^{k l}=\mathcal{E}_{1}^{2} a^{k l}, \quad B_{1}=b^{k k}=\mathcal{E}_{1}^{2} A_{1}, \quad \mathcal{E}_{1}=-\mathcal{I}_{1}^{-1}
$$

The transformed interaction depends on the trace B_{1}

$$
\mathcal{I}\left(B_{1}\right)=\mathcal{E}\left(A_{1}\right)-2 A_{1} \mathcal{E}_{1}, \quad \nu^{k l}=-\mathcal{I}_{1} \bar{\mu}^{k l}, \quad a^{k l}=\mathcal{I}_{1}^{2} b^{k l}
$$

If $\mathcal{E}=\frac{1}{2} A_{1}$ then $\mathcal{I}=-2 B_{1}$. The twisted self-duality equation has the polynomial form in this case

$$
F_{\alpha \beta}^{k}=V_{\alpha \beta}^{\prime}\left[\delta^{k l}+\frac{1}{2}\left(\bar{V}^{k} \bar{V}^{\prime}\right)\right] .
$$

The iterative solution of this equation

$$
\begin{gathered}
V_{\alpha \beta}^{k}=\left[\delta^{k l}-\frac{1}{2} \bar{\varphi}^{k l}+\frac{1}{4} \bar{\varphi}^{k r} \bar{\varphi}^{r l}+\frac{1}{4} \varphi^{k r} \bar{\varphi}^{r l}\right. \\
\left.+\frac{1}{4} \bar{\varphi}^{k r} \varphi^{r l}+\ldots\right] F_{\alpha \beta}^{\prime}
\end{gathered}
$$

This solution gives us the perturbative self-dual Lagrangian for the simplest interaction $\mathcal{E}=\frac{1}{2} \operatorname{Tr} a$

$$
\begin{aligned}
& L_{S I}=\operatorname{Tr}\left[-\frac{1}{2} \varphi-\frac{1}{2} \bar{\varphi}+\frac{1}{2} \varphi \bar{\varphi}-\frac{1}{4} \varphi^{2} \bar{\varphi}-\frac{1}{4} \varphi \bar{\varphi}^{2}\right] \\
& +\operatorname{Tr}\left[\frac{1}{8} \varphi^{3} \bar{\varphi}+\frac{1}{4} \varphi^{2} \bar{\varphi}^{2}+\frac{1}{4}(\varphi \bar{\varphi})^{2}+\frac{1}{8} \varphi \bar{\varphi}^{3}+\ldots\right]
\end{aligned}
$$

Manifestly self-dual decomposition of the nonlinear U(1) action with auxiliary fields

We analyze the version of our $U(1)$ Lagrangian using two gauge fields A_{m}^{1}, A_{m}^{2}, auxiliary tensor fields $F_{m n}$ and $V_{m n}$

$$
\mathcal{L}\left(F, V, A^{1}, A^{2}\right)=\frac{1}{4} F^{m n} F_{m n}-F^{m n} V_{m n}+\frac{1}{2} F^{m n} F_{m n}^{1}-\frac{1}{2} F^{m n} \tilde{F}_{m n}^{2}
$$

$$
+\frac{1}{4} F^{1 m n} F_{m n}^{1}-F^{1 m n} V_{m n}+\frac{1}{2} V^{m n} V_{m n}+\mathcal{E}\left(V^{2}+w^{2}\right)
$$

where $F_{m n}^{1}=\partial_{m} A_{n}^{1}-\partial_{n} A_{m}^{1}$ and $F_{m n}^{2}=\partial_{m} A_{n}^{2}-\partial_{n} A_{m}^{2}$. Excluding the field A_{m}^{2} we obtain the Bianchi identity for $F_{m n}$. Solving this identity via \tilde{A}_{m} :

$$
F_{m n}=\partial_{m} \tilde{A}_{n}-\partial_{n} \tilde{A}_{m}
$$

we return to the original formulation of our Lagrangian.

We consider the $O(3)$ decomposition of the Lorentz-covariant field-strengths

$$
F_{m n}^{1}(A)=\partial_{m} A_{n}^{1}-\partial_{n} A_{m}^{1}, \quad \tilde{F}_{m n}^{1}=\frac{1}{2} \varepsilon_{m n r s} F^{1 r s}
$$

and auxiliary fields $V_{m n}$

$$
\begin{gathered}
F_{0 k}^{1}(A)=E_{k}^{1}(A)=\partial_{0} A_{k}^{1}-\partial_{k} A_{0}^{1}, \\
F_{k l}^{1}(A)=\varepsilon_{k j j} B_{j}^{1}=\partial_{k} A_{l}^{1}-\partial_{l} A_{k}^{1}, \\
\tilde{F}_{0 k}^{1}=B_{k}^{1}, \quad \tilde{F}_{k l}^{1}=-\varepsilon_{k l j} E_{j}^{1}, \quad V_{0 k}=V_{k}, \quad V_{k l}=\varepsilon_{k j} U_{j}
\end{gathered}
$$

where $k, l, j=1,2,3$.

The 3D decompositions of the covariant scalar combinations of auxiliary fields read

$$
\begin{gathered}
\nu=v+i w=\frac{1}{2} U_{k} U_{k}-\frac{1}{2} V_{k} V_{k}-i V_{k} U_{k} \\
a(V, U)=v^{2}+w^{2}=\frac{1}{4}\left(U_{i} U_{i}\right)^{2}+\frac{1}{4}\left(V_{i} V_{i}\right)^{2} \\
-\frac{1}{2}\left(U_{i} U_{i}\right)\left(V_{k} V_{k}\right)+\left(V_{i} U_{i}\right)^{2}
\end{gathered}
$$

By the analogy with the method of A. Tseytlin in the $B I$ theory we can preserve two gauge fields

$$
A_{m}^{1}=\left(A_{0}^{1}, A_{k}^{1}\right), \quad A_{m}^{2}=\left(A_{0}^{2}, A_{k}^{2}\right)
$$

and use the non-covariant gauge for the auxiliary field $F_{m n}=\left(F_{0 k}, F_{k l}\right)$

$$
F_{0 k}=F_{k}, \quad F_{k l}=0, \quad \tilde{F}_{0 k}=0, \quad \tilde{F}_{k l}=-\varepsilon_{k j} F_{0 j}=-\varepsilon_{k j j} F_{j} .
$$

The non-covariant form of our bilinear Lagrangian reads

$$
\begin{aligned}
& L_{2}\left(F, V, U, A^{1}, A^{2}\right)=-\frac{1}{2} F_{k} F_{k}+2 F_{k} V_{k}-F_{k} E_{k}^{1}-\frac{1}{2} E_{k}^{1} E_{k}^{1} \\
& \quad+\frac{1}{2} B_{k}^{1} B_{k}^{1}+2 E_{k}^{1} V_{k}-2 B_{k}^{1} U_{k}+F_{k} B_{k}^{2}-V_{k} V_{k}+U_{k} U_{k}
\end{aligned}
$$

Using the following $O(2)$ transformations

$$
\begin{gathered}
\delta F_{k}=2 \omega U_{k}-\omega E_{k}^{2}-\omega B_{k}^{1}, \quad \delta V_{k}=\omega U_{k}, \quad \delta U_{k}=-\omega V_{k}, \\
\delta E_{k}^{a}=\omega \varepsilon^{a b} E_{k}^{b}, \quad \delta B_{k}^{a}=\omega \varepsilon^{a b} B_{k}^{b}
\end{gathered}
$$

we prove the $O(2)$ invariance of the non-covariant bilinear action

$$
\begin{aligned}
& \delta S_{2}=\int d^{4} x \delta L_{2}=\omega \int d^{4} x\left(E_{k}^{1} B_{k}^{1}-E_{k}^{2} B_{k}^{2}\right)=0, \\
& F^{1 m n} \tilde{F}_{m n}^{1}=-4 E_{k}^{1} B_{k}^{1}=\operatorname{div}, \quad F^{2 m n} \tilde{F}_{m n}^{2}=-4 E_{k}^{2} B_{k}^{2}
\end{aligned}
$$

Now we can exclude the auxiliary field F_{k} using its algebraic equation

$$
F_{k}=2 V_{k}-E_{k}^{1}+B_{k}^{2} .
$$

The $O(2)$ invariant Lagrangian with two gauge fields and auxiliary fields V_{k}, U_{k} has the form
$\tilde{L}\left(A^{1}, A^{2}, V, U\right)=\frac{1}{2} B_{k}^{1} B_{k}^{1}+\frac{1}{2} B_{k}^{2} B_{k}^{2}-E_{k}^{1} B_{k}^{2}+2 V_{k} B_{k}^{2}-2 B_{k}^{1} U_{k}$

$$
+V_{k} V_{k}+U_{k} U_{k}+\mathcal{E}[a(V, U)]
$$

where $\mathcal{E}(a)=\frac{1}{2} a+e_{2} a^{2}+\ldots$ is the invariant auxiliary interaction.
It is evident that

$$
\delta \tilde{L}\left(A^{1}, A^{2}, V, U\right)=-\delta\left(E_{k}^{1} B_{k}^{2}\right)=\omega\left(E_{k}^{1} B_{k}^{1}-E_{k}^{2} B_{k}^{2}\right)=\operatorname{div}
$$

and other terms are manifestly invariant.

The equations for V_{k} and U_{k} can be solved in the lowest orders of the perturbation theory via the fields B_{k}^{1} and B_{k}^{2}

$$
\begin{aligned}
& V_{k}=-B_{k}^{2}+\frac{1}{4} B_{k}^{2}\left(B_{l}^{2} B_{l}^{2}\right)-\frac{1}{4} B_{k}^{2}\left(B_{l}^{1} B_{l}^{1}\right)+\frac{1}{2} B_{k}^{1}\left(B_{l}^{2} B_{l}^{1}\right)+O\left(B^{5}\right), \\
& U_{k}=B_{k}^{1}-\frac{1}{4} B_{k}^{1}\left(B_{l}^{1} B_{l}^{1}\right)+\frac{1}{4} B_{k}^{1}\left(B_{l}^{2} B_{l}^{2}\right)-\frac{1}{2} B_{k}^{2}\left(B_{l}^{2} B_{l}^{1}\right)+O\left(B^{5}\right),
\end{aligned}
$$

then we obtain the manifestly self-dual Lagrangian depending on these fields

$$
\begin{aligned}
L\left(A^{1}, A^{2}\right)= & -\frac{1}{2} B_{k}^{1} B_{k}^{1}-\frac{1}{2} B_{k}^{2} B_{k}^{2}-E_{k}^{1} B_{k}^{2}+\frac{1}{8}\left(B_{i}^{1} B_{i}^{1}\right)^{2}+\frac{1}{8}\left(B_{i}^{2} B_{i}^{2}\right)^{2} \\
& -\frac{1}{4}\left(B_{i}^{1} B_{i}^{1}\right)\left(B_{k}^{2} B_{k}^{2}\right)+\frac{1}{2}\left(B_{i}^{1} B_{i}^{2}\right)^{2}+O\left(B^{6}\right)
\end{aligned}
$$

The covariant auxiliary interaction $\mathcal{E}(a)$ generates the non-polynomial self-dual Lagrangians $L\left(A^{1}, A^{2}\right)$. Note that all terms of the fixed order in this representation are invariant under the linear $O(2)$ transformation.

Our Lorentz-covariant self-dual Lagrangian with the arbitrary invariant auxiliary interaction is equivalent to the non-covariant and manifestly $\mathrm{O}(2)$ invariant Lagrangian. The similar non-covariant and manifestly $U(N)$ invariant Lagrangian with N pair of the gauge fields A^{1} and A^{2} can be constructed

THANK YOU

